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The article deals with the special features of the rheodynamics and thermophy- 
sics of the shear strain of elastoviscoplastic media in long channels when a 
pressure gradient is suddenly imposed. 

The widely used liquid disperse systems of the type of filled polymer solutions, clayey 
suspensions, drilling fluids are able to form spatial structures from particles of the dis- 
perse phase. The rheology of such systems is distinguished by a number of special features. 
At stresses below yield point the structure is an elastically deformed skeleton in solid 
form. At stresses exceeding the yield point, flow with reversible rupture of contacts be- 
tween elements of the structure sets in. The existence of a yield point, of elastic pro- 
perties, and also of effects of viscosity, creep, stress relaxation manifesting themselves 
in flow determines the peculiarities of the dynamic behavior of the media under considera- 
tion. On account of the spatial inhomogeneity of the stress fields in them, zones with 
ruptured and nonruptured structure form in them. A change of the loading conditions causes 
relative displacement of the interfaces between regions with different states of the struc- 
ture, and in the zone with nonruptured structure it gives rise to elastic waves. 

Let us consider a simple model situation. A medium at rest in a long flat channel is 
suddenly subjected to a longitudinal pressure gradient 8p/Sz = (Sp/Sz)0"l(t). The response 
reaction to this effect depends on the magnitude of the yield point, the width of the chan- 
nel, and the pressure gradient. If the mechanical action does not destroy the spatial struc- 
ture, then only reversible deformations are induced in it, and its mechanical behavior is 
described by the equations of motion of an elastic finitely deformed medium. For a flat 
channel and simple shear 

a~U ap + O 0~U 
p . . . . .  (1) 

Ot ~ Oz 0 /  

The s o l u t i o n  o f  Eq. (1 )  w i t h  z e r o  i n i t i a l  c o n d i t i o n s  and w i t h  a d h e s i o n  o f  t h e  medium t o  
the wall determines the dependence of the tangential stress at the channel wall on time [i] 

o/Ts ( t ) - -  2 (t - -  T e l s ) .  l (t ~ l s )  + ' " l "  (2) 

The maximal s t r e s s  a t  the  wa l l  i s  ~dyn When the  maximal s t r e s s e s  a re  lower than  the  y i e l d  max" 
point, oscillations of the structure without dissipation are effected. If the external 
loads induce stresses greater than the yield point (H(ap/az) 0 > Y), then the deformation is 
accompanied by dissipation of mechanical energy in the near-wall zones of the channel where 
flow of the destroyed structure occurs. This is a transient process of deformation from 
rest to a new steady state. The result of the transient process is determined solely by 
the stress level, and the features of its course by the stress level and by the intensity of 

dissipation. 

After impulsive change of the pressure gradient in the channel, the stresses begin to 
increase. In the near-wall region they overlap the yield point and form a zone of flow 
whose evolution in dependence on the external conditions may proceed in two directions. One 
possible variant is the gradual attainment of a regime of steady flow in the region with des- 
troyed structure in the time Tvi s % pH2/q which, with fixed level of yield stress, is inver- 
sely proportional to the rate of dissipation of mechanical energy. It follows from the law 
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Fig .  2 
Fig. i. Time-dependent change of stresses on the wail of a flat channel (6 = 
99, ~ = 50): I) ~0 = 0.75; 2) 0.6; 3) 0.45; 4) 0.3. 

Fig. 2. Time-dependent change of the volumetric flow rate in a coaxially cy- 
lindrical channel (a) and of the width of the flow zone with destroyed struc- 
ture at the outer wall (b) and at the inner wall (c) upon increase and drop 
(t = 8) of the pressure gradient: i) ~0 = 0.9; 2) 0.7; 3) 0.3. The curvature 
of the channel 6 = i, ~ = 50. 

of conservation of momentum that with steady flow at the wall, the tangential stress is 
maximal and equal to ~maxSt = H(Sp/3z)0/2. That means that transition to the regime of steady 
flow of the destroyed structure is possible only on condition that H(Sp/3z)0/2 ~ Y. With 
~st E v < T(dyn) the transient process proceeds with the inclusion and exclusion of the dis- max " - max 
sipative mechanism at instants when the yield point is exceeded (at the approach of the elas- 
tic wave) and when the stress is below Y (at the departure of the wave), respectively. En- 
ergy dissipation in a region with destroyed structure gradually reduces the amplitude of the 
stress oscillations in the wave. This type of "dynamic" transient process is completed when 
the maximal tangential stress in the wave is below the yield point. The structure of the 
medium is then not subject to further destruction. An oscillation regime is then estab- 
lished of cumulation and release of the elastic energy of reversible deformations of the un- 
destroyed structure. We note that the duration of the "dynamic" transient regime is deter- 
mined by the rate of dissipation in the appearing zones with destroyed structure. The 
higher the rate, the more rapidly decreases the amplitude of the stress oscillations in the 
wave to a value below the yield point. Thus there are possible two types of transient re- 
gime of shear strain in the systems under consideration. In the present work we study them 
for channels with flat and annular profile. We also examine the general features of the 
course of thermal processes in similar media. 

For a qualitative investigation of systems with the above-described complex of structu- 
ral and mechanical properties we chose the model of an elastoviscoplastic medium which for 
nonsteady shear flow has the form 

�9 --Ysign(?)  - I ( IT[ - -Y)+  G O~ . I ( Y - - ] ~ I ) = ~ .  (3) 

This model does not take into account the effects of creep and stress relaxation but it 
makes it possible to reveal and evaluate the main peculiarities of transient processes in 
elastoviscoplastic systems, also in thixotropic media where the times of destruction and res- 
toration of the structure may be neglected [2, 3]. 

The mechanical properties of a medium with the rheological equation of state (3) are 
conveniently characterized according to its behavior in regimes of uniform deformation. With 
the instantaneous change of the strain rate y = Y0-1(t), Y0 > O, the stresses increase line- 
arly with time as long as ~ < Y. When �9 = Y, the stresses increase jumplike by the magni- 
tude of the viscous component ~Y0 and remain constant until the strain rate has vanished (i= 
0). At that instant the yield point Y is attained. At an instantaneous change of stresses 
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Fig. 3 Fig. 4 
Fig. 3. Dependence of the maximal dynamic stress at the inner wall 
(curve i) and at the outer wall (curve 2) on the curvature of the chan- 
nel. 

Fig. 4. Change of the speed (a, b) and of the stress (c, d) over the 
section of a flat channel, ~ = 50: I) t/4 : 0.i; 2) 0.2; 3) 0.3; 4) 1.6; 
80 = 0.45 (a, c), 80 = 0.75 (b, d). 

o,z ~ o,z 
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= ~0"l(t), T 0 > Y, there follows an instantaneous response of inverse strain ~0 = Y/G and 
increase of deformation that is linear with time. When the stress drops to zero, deforma- 
tion decreases to the value ~0. 

For hydrodynamic transient processes relation (3) is supplemented by the equation of 
motion 

Ov Op 1 O 
P - -  + -- - -  (rT), (4) 

Ot az r Or 

and also by the initial and boundary conditions: 

vl~=o = 0, (5) 

vl~=R~ = 0, vl~=R, = 0. ( 6 )  

The initial-boundary value problem (3)-(6) ma~ be written in dimensionless variables. It 
contains two independent parameters r = r/H, t = t/Tel s and three dimensionless complexes 
~0 = Y/(H(%P/SZ)0), ~i = G/(H(SP/SZ)0), r = H/~/q. The criterion B0 determines the type of 
transient regime. Specifically, for a flat channel with 0.5 < ~0 < i oscillations of stres- 
ses and strains are realized (the "dynamic" type of transient regime). When 0 < 80 < 0.5, 
then as a result of the transient process two regions form: at the walls, where we find 
steady viscoplastic flow with completely destroyed structure, and at the axis where the me- 
dium with intact structure moves as a whole. The complex ~ determines the ratio of the char- 
acteristic times of propagation of the viscous and of the elastic shear wave: ~ = Tvis/Tels. 
The parameter 81 is the measure of elastic deformations in the region with intact structure 
81 ~ ~-z. The value of 81 is henceforth fixed and equal to i. 

For calculating heat exchange we use the equation of convective energy transfer 

Du - -- 
9 D-'-'T=--vq+T:D' q=--EV 0, (7) 

1274 



0,z 

o,1 

0 

-o,1 

o,z 

O,Z 

-u,2 

b 

1 Z �9 

,0 ~/~ 

Fig. 5 Fig. 6 
Fig. 5. Change of the instantaneous volumetric flow rate (curves 1-3) and of 
the total volume of the medium passing through the cross section of a flat 
channel (curves 1'-3') in dependence on the parameter ~: i, i') ~ = 5; 2, 2') 
50; 3, 3') 500. ~0 = 0.6, ~ = 99. 

Fig. 6. Time-dependent change of the dissipative function $ = @/v, averaged_ 
over the zone with destroyed structure @2 (curve 1), with int@ct structure @i 
(curve 2), over the entire cross section of the fiat channel @ (curve 3); a) 
~0 = 0.45; b) 0.75. ~ = 50, ~ = 99. 

jointly with the energy equation of state. In the region with destroyed structure, where 
the deformations are irreversible, the internal energy is a function of the temperature only, 
u = u(0), and Eq. (7) turns into an ordinary equation of heat transfer for inelastic liquids 

D0 
p0p-SF = T: p (8) 

E q u a t i o n  (8)  makes i t  p o s s i b l e  in  p r i n c i p l e  t o  c a l c u l a t e  a t h e r m a l  p rob l em when t h e  v e l o -  
c i t y  field and the space-and-time distribution of the dissipative heat releases in the chan- 
nel are known. Below these data are presented from the numerical solutions of the system (4)- 
( 6 ) .  

Let us deal with the region with intact structure. The equation of free energy for sys- 
tems with elastic properties in accordance with the principle of equal presence contains as 
independent variables the temperature and the strain tensor: A = A(e, F R) [4]. In elastic 
systems the deformations are usually correlated with a change of internal energy u = u(e, FR). 
We isolate the equilibrium part of the internal energy of the systems whose change occurs 
solely on account of a change of temperature. Then u = u0(e) + Au(8, FR) and it follows 
from (7) that 

p(op+Aop) otDO _ t I):D'- (9) 
ACp d e n o t e s  t h e  c o n t r i b u t i o n  o f  e l a s t i c  d e f o r m a t i o n s  t o  t h e  h e a t  c a p a c i t y  o f  t h e  medium; 
u s u a l l y  i t  i s  s m a l l  compared w i t h  Cp. 

Le t  us c o n s i d e r  two l i m i t  c a s e s .  I n  p o l y m e r s  media  d e f o r m a t i o n s  a r e  c o n n e c t e d  c h i e f l y  
w i t h  a change  o f  t h e  c o n f i g u r a t i o n a l  e n t r o p y  o f  t h e  p o l y m e r  c h a i n s  o n l y :  s = s ( 0 ,  FR) .  They 
do n o t  a f f e c t  t h e  m a g n i t u d e  o f  t h e  i n t e r n a l  s t r a i n  e n e r g y :  u = u ( 0 ) .  I f  we assume t h a t  in  
the region with intact structure there is in fact only entropy elasticity, then we obtain 
from Eq. (9) the equation of temperature distribution in the form (8). 

The second law of thermodynamics correlates the equation of free energy with the rheo- 
logical equation of state of a system that is suitable for reversible deformations [5]: 

_ { aA y ( 1 0 )  
r = 9F R \ OF R ) .  
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Substituting (i0) into (9), we obtain 

Do - : Os V 
pcPDt =--vq+pOFRk, OFR ] :D.. (11) 

In elastic solids the deformations are of a purely energetic nature: u = u(0, FR). Entropy 
does not depend on deformations: s = s(0) [5]. If we regard these relations as correct for 
the region with intact structure, then a change of temperature is determined by the ordinary 
equation of heat conduction 

DO 
= - v q .  (12)  

Dt 
Thus, in the examined limit cases of purely entropy and purely energetic elasticity there are 
equations for the temperature which make it possible to model the processes of heat transfer 
in the zone with intact structure. If in the state with intact structure the medium has en- 
tropy elasticity, then in the entire region of deformation the equation of heat transfer has 
the form (8), and for the condition of energetic elasticity in the region with destroyed 
structure an equation type (8) has to be used, in the region with intact structure Eq. (12) 
has to be used. 

For the flow of liquid disperse systems in long mains with slow heat liberation we may 
use the equation of heat balance [6] 

pep ~- =q~+q1+q:', 

(13) 
R2 R2 

= 2~[ rOdr, ~ = 2 ~  ~r(Ov/Or) dr. 
R~ Rt 

Here, @ is a dissipative function averaged over the entire range of deformation when u = u(8), 
s = s(8, ~R), or only over the region with destroyed structure when u = u(e, ~R), s = s(0). 
The effects of heat liberation at the boundary of the zones are small and are not taken into 
account. In the present work we examine the dynamics of change of the dissipative function 
in the region with destroyed structure as well as in the region with intact structure. Such 
dependences are indispensable for the subsequent solution of the problem of heat exchange 
(13). 

The formulated nonlinear problem (3)-(6) cannot be solved analytically. For a numerical 
analysis we used a discrete analog constructed by the method of control volume [7]. The re- 
sults of the calculations are presented in Figs. i-5. Figure ! shows the time-dependent 
change of the tangential stress at the wall of a flat channel ~w = ~w/(H(SP/SZ)0 ) = 60~w/Y" 
The graphs reveal the wave nature of the development of Tw with 60 = 0.75, 0.6, correspond- 
ing to the "dynamic" transient regime. A larger oscillation amplitude corresponds to larger 
60- The oscillations become steady after the first period. This has to do with the consi- 
derable rate of energy dissipation in the region of flow of the destroyed structure. When 
8o = 0.3, 0.45, the stresses attain their steady level after a few oscillations. The change 
of stress at the channel wall is connected with the change of dimension of the near-wall 
zone of flow. The region with destroyed structure originates at the instant when the tan- 
gential stress at the wall becomes equal to the yield point T w = 60. In the case of "dyna- 
mic" transient regime the region of flow increases with increasing tangential stress at the 
wall and decreases with its decrease. When ~w decreases to the level of 60, the zone with 
destroyed structure vanishes. When the maximal value of the tangential stress in the sub- 
sequent period attains the yield point, then the near-wall flow develops again. When the 
dissipative process has reduced the amplitude of stress oscillations to values below the 
yield point, then a zone of destroyed structure does not originate, and the transient pro- 
cess comes to an end. For 80 corresponding to the second type of transient regime the size 
of the zone of flow attains a steady value after the oscillations. 

Figure 2a shows the dynamics of change of the flow rate of the medium Q determined in 
the following manner: 

Rz 

R, 
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With the second type of transient process after sudden loading we find that the flow rate 
increases monotonically until a steady value is attained (curve 3 in Fig. 2a)o At the same 
time near the boundaries, the medium with destroyed structure flows, and at the center the 
zone with intact structure moves uniformly. The abrupt drop of the pressure gradient to zero 
when t/4 = 2 leads to the gradual disappearance of the zone of flow "(Fig. 2b, c) and to pure- 
ly elastic deformation of the intact structure. The values of the flow rate oscillate about 
zero at constant amplitude. If a "dynamic" transient regime is effected, e.g., ~0 = 0.7, 
0.9 (~ = i), then the changes of flow rate are of an oscillating nature already in the first 
phase, viz., loading. The maximal flow rate in the first period of passage of the elastic 
wave exceeds the amplitude of the oscillations that is established during the subsequent 
periods. This is connected with the short-term effect of destruction of the structure ac- 
companied by flow. In the case under consideration at the instant of unloading the struc- 
ture is in a restored state. The drop of the pressure gradient induces a "dynamic" type of 
transient process as a result of which oscillations of flow rate with constant amplitude 
establish themselves~ 

An interesting feature of channels with annular profile is their modification of the 
"dynamic" transient regime: near the inner channel wall there are regions of flow, and next 
to the outer wall there are none (Fig. 2b, c). This is due to the asymmetric distribution 
of the tangential stresses over the cross section of the channel. 

For different curvatures of a coaxially cylindrical channel we can determine from Fig~ 3 
those limit values of tangential stress at the wall at which destruction of the structure 
occurs near the inner and outer walls with the specified yield point. With large ~ corres ~ 
ponding to a flat channel, these values coincide and are equal to H(Sp/Sz) 0. 

Figure 4 presents graphs of flow rate distribution and stresses across the channel at 
different instants. In the case of "dynamic" transient regime (Fig. 4b, d) the region of 
the channel cross section can be divided into two zones according to the nature of the defor- 
mation. In the first zone, where the structure is temporarily destroyed, the wave mecha- 
nism of development of the flow rate profiles and of tangential stresses is replaced by a 
diffusional mechanism, and then again by a wave mechanism. In the second zone the structure 
is not destroyed during the entire process. Here we find only oscillations of flow rates 
and stresses without dissipation. During the second type of transient process we can dis- 
tinguish three types of region (Fig. 4a, c). In the first region (near the channel walls) 
the development of the profiles proceeds by way of diffusion after the stresses have attained 
the yield point. In the second region, which lies at the center of the channel, the stres- 
ses and flow rates carry out attenuated oscillations about the steady values. The third 
region is an intermediate one, here the stresses and flow rates increase at first, like in 
an elastic medium, then flow begins, and the change of these variables is of a diffusional 
nature. Finally, when the stress level has dropped below the yield point, the flow rates 
and stresses after some oscillations assume equilibrium values. 

Figure 5 shows the effect of the parameter ~ on the flow rate characteristics of the me- 
dium in "dynamic" regime of deformation. Smaller r correspond to higher intensity of the 
dissipative process during flow in the zone with destroyed structure. With moderate ~ (~ = 
5, 50) the transient process ends toward the end of the first period because that part of the 
energy that is indispensable for increase of the stresses above the yield point has been 
dissipated. With large ~ (~ = 500), corresponding to systems with little dissipation, the 
transient process continues for many periods. Thus the absolute length of the transient pro- 
cess continues for many periods. Thus, the absolute length of the transient process with 
fixed time of propagation of the elastic wave Tel s increases with increasing characteristic 
time of propagation of a viscous shear wave Tvi s in a destroyed structure. It can be seen 
from the figure that the volume of medium passing through the channel cross section during 
the time of the transient process increases when r increases. This is due to the lower re- 
sistance when flow occurs in a region with destroyed structure since this is associated with 
lower intensity of energy dissipation. 

Figure 6 shows the contribut:[on of the dissipative functions, averaged over the zone of 
flow of the destroyed structure <~2 and over the region with intact structure ~, to the total 
values of the mean dissipative function $. It can be seen from the graphs that with the 
second transient regime ~2 is close in value to the dissipative function ~. Conversely, for 
"dynamic" transient regimes the values of the dissipative functions Sz are closer to the over- 
all dissipative function. Thus, whereas in the intact structure elastic deformations are of a 
purely energetic nature, with the second type of transient processes the mean stress level 
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can always be approximately calculated over the entire width of the channel because $ = $2. 
In effecting the "dynamic" transient regime, the dissipative function in E~. (13) has to be 
determined by the value of #2. It should be emphasized that the value of ~i averaged over a 
period of oscillations is equal to zero, and the dissipative function $ averaged over a 
period coincides with the function ~2 averaged over a period, therefore the problem of deter- 
mining the energy equation of state of the medium is not a matter of principle. 

The analysis of the transient processes of shear strain of liquid disperse systems on 
the basis of the elastoviscoplastic model revealed a number of peculiarities of their course. 
It was shown that there may be two kinds of transient regimes. The type of transient regime 
is determined by the parameter G0, which depends on the yield point, the widthof the channel, 
the jump of the pressure gradient, as well as by the curvature of the channel 6. The dura- 
tion of the transient process, and also the amplitude of the oscillations of flow rates, 
stresses, flow-rate characteristics are correlated with the dissipation rate of mechanical 
energy in the zone with destroyed structure characterized by the parameter ~. When thermal 
processes are modeled, it becomes necessary to take the elastic properties Of the structure 
into account. If the balance equation of heat conduction is to be used, the nature of the 
reversible deformations has to be revealed. In the case of entropy and energetic elasticity 
the traditional balance equation of heat conduction may be used. Thus, the obtained results 
point up the decisive effect of structural and mechanical factors on the type of transient 
process and other peculiarities of the deformation of elastoviscoplastic media. 

NOTATION 

x, y, z, Cartesian coordinates; r, z, polar coordinates; l(t), Heaviside's unit function; 
p, pressure; p, density; U, displacement; T, stress in simple shear; TW, shear stress at the 
channel wall; H, width of the channel; t, time; G, elastic shear modulus; T=is, half-period 
of an elastic shear wave (Tel s = HJp/---G); Y, yield point; ~, plastic viscosity; ~), maxi- 
mal shear stress in deformation of an elastic medium in a flat channel; D, deviator of the 
strain-rate tensor; T, deviator of the stress tensor; ~, shear strain; v, velocity; to, time 
of observation; i, shear rate; r = r/H, dimensionless coordinate; t = t/Tels, dimensionless 
time; ~, G0, ~l, dimensionless complexes; u, internal energy referred to unit mass; q, heat 
flux; Cp, specific heat capacity; 8, temperature; %, thermal conductivity; A, Helmholtz' 
free energy; ~R' gradient of deformation relative to the reference configuration not coin- 
ciding with the configuration of the instant of observation; s, entropy; qz, q2, external 
heat fluxes on the channel walls; R I, R 2, radii of the inner and outer cylinder, respectively, 
forming the coaxially cylindrical channel; 6 = RI/H, parameter characterizing the curvature 
of the channel with constant H; hl, h2,_width of the zone of flow at the inner and outer 
channel wall, respectively, hl = hl/H, h2=h2/H; ~, v, scales of flow rate and of the dissipative 
function (~ : ~H2/G/p, ~ = ~HG3/2/p1/2). 
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